Post-traumatic Stress Disorder Following Trauma Injuries in Military Personnel

Mehrdad Faraji1, Mohammad Reza Ghane1, Hamid Reza Javadzadeh1, Fahime Shahjooie1, Ali Azadpour1, Hasan Goodarzi1, Sadrollah Mahmoodi1*

1 Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.

* Corresponding Author: Sadrollah Mahmoodi, Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran. Email: sadrollah.mahmoudi@gmail.com.

Received 2022-12-25; Accepted 2023-04-10; Online Published 2023-04-27

Abstract

Introduction: War-zone injuries are creating PTSD. This study aimed to assess Posttraumatic stress disorder (PTSD) Following Traumatic injuries among the Military Populations.

Methods: PubMed, Scopus, Web of Science, and Google Scholar sites were searched from 2013 to 2023. Two authors separately screened, assessed, and included the studies and any disagreement resolved by senior reviewers.

Results: Fifteen studies were included. Mental disorders among the forces showed that diseases, such as PTSD, were the highest among the military forces. The PTSD proportion in TBI cases was more significant than those without TBI. The cause of injuries and PTSD outcomes was due to blast injuries.

Conclusion: PTSD is among military force personnel's most common mental health disorders. Therefore, measures must be taken to prevent and control these diseases, especially among military combat forces. Classifying mental health disorders based on gender, age, the type of military service, the location of troops, the military rank of individuals, and the relationship with PTSD require further studies.

Keywords: PTSD; Military; Trauma.

Introduction

Mental disorders are among the most critical problems that may threaten military forces' health. Military staff uncovered war-zone injuries are a chance for creating PTSD1-3. Those at the most prominent opportunity are those discovered to the most noteworthy levels of war-zone stretch, those injured in activity, those imprisoned as war detainees, and those who show intense war-zone response4, 5.

Recent studies and studies have shown that civilian and military patients with varying degrees of traumatic brain injury can develop PTSD6. Several processes have been proposed to explain onset, even in severe cases, such as the increased emotional significance of the event due to structural and functional changes in the brain, fear conditioning, PTA resolution, or memory restructuring. For example, a patient with a severe traumatic brain injury who has no memory of a car accident may experience PTSD after viewing a magazine article about the accident7,8.

PTSD is characterized by the onset of symptoms following exposure to one or more traumatic events. Events such as war, terrorism, aggression, catastrophes, and motor vehicle accidents can be physically and psychologically traumatic and expose individuals to co-occurring risks: craniocerebral trauma and post-traumatic stress disorder. In the context of traumatic brain injury, “trauma” or “traumatic” are terms commonly used for sudden and severe physical damage, which excludes the possibility of psychological trauma. From a PTSD perspective, these terms refer to psychologically intense experiences9.

The mental health of military forces directly affects their job effectiveness, and research shows that mental health is one of the most critical factors in the job survival and productivity of military forces10. Many
factors, such as long-term deployment in military environments, being ready for operations, and being away from home and family, can increase the risk of psychological stress and mental health damage in military forces.10-12 Military service can be considered a stressful job like other emergency services. However, unlike other occupations in which the risk of stressful events can be compared with everyday stressful circumstances, it is not possible to compare the frequency and severity of stressful events experienced by the military forces with regular stressful events because it has conditions and many influential factors cannot be searched and assimilated in typical environments.13-15 In truth, life in the military forces requires spending a lot of time away from family, friends, and relatives, which does not make it possible to receive support and help from them during the period of distance.14-15

Evaluating the probability of the occurrence of any disease has inherent importance in the category of prevention because any type of disease that can be predicted before the event of symptoms and signs can significantly help control the spread of that disease in the target group and population. Therefore, knowing the common conditions among the military forces and checking the possibility of their occurrence through the review of existing documents and reports can somehow play the role of screening for these types of diseases and help to plan correctly while knowing the current situation of the actual incidence of those disorders should be prevented in the future.

This study aimed to assess Posttraumatic stress disorder Following Traumatic injuries among Military Populations.

\textbf{Methods}

The preferred reporting methods for systematic reviews and meta-analyses guidelines were followed. We searched the PUBMED, SCOPUS, Web of Science, and Google Scholar databases for relevant studies (2013-2023).

Included criteria were the English language, which counted on military/veteran, and diagnostics were obtained through documented and validated diagnostic tools for PTSD. To search for articles from the keywords in the MeSH database such as "Military," "Mental," "Police," "Posttraumatic stress disorder," "PTSD," "Mental Health," "Army," and "Trauma" "injuries*" and "Disorders" were used. The mentioned words were searched in the search fields related to keywords, article title and article abstract using Boolean operators “And” and “Or”.

Two reviewers independently filtered the documents’ titles, abstracts, and methodological validity utilizing a data extraction format before their inclusion in the final review. Discussions with the senior faculty associate were employed to fix reviewer disagreements during the examination stage.

\textbf{Results}

Fifteen articles were included and were used in analysis (Table 1).

Pre-PTSD risk factors included female gender, minority status, lower educational attainment, noncommissioned rank, military service, combat expertise, multiple deployments, longer cumulative deployment duration, and more adverse life events, exposure to previous trauma, etc., problem. Various aspects of the trauma stage also show risk factors such as increased combat stress, weapon firing, witnessing someone being injured or killed, severe trauma, and work-related stressors. Finally, the lack of post-deployment support in the post-traumatic period also increased the risk of PTSD.

Cognitive, anger, and physicality subscales were significantly higher in veterans with PTSD, but there was no interaction between PTSD and TBI or outburst history.

Daytime sleepiness may be a mediating factor by which both mTBI and PTSD can impair future memory. Regardless of subjective sleep quality, clinical care of individuals with a self-reported history of mTBI and/or PTSD should pay more attention to complaints of daytime sleepiness.

Barriers to self-care include disease severity, involvement in other chronic physical illnesses, aggressive personality types, propensity for risky behavior, and delays in starting treatment, drug-treatment interactions, and psychotropic medications. Side effects and inappropriate access to certain medicines. Fatigue from long-term drug use, forgetting to take some drugs, inadequate dependence on pure drug therapy, lack of social worker activity, and inadequate organization.
Comorbid mental health problems (Cognitive, anger, fatigue, stress, sleepiness, anxiety etc.) and subsequent life events were not positively associated with PTSD, but post-deployment support was a protective factor (Table 1).

Table 1: Studies’ characteristics

<table>
<thead>
<tr>
<th>Studies</th>
<th>samples</th>
<th>Setting</th>
<th>Type of the study</th>
<th>causes</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carolyn et al (2020)16</td>
<td>70,864 women Veterans aged 65.8± 10.4 years</td>
<td>USA</td>
<td>cohort</td>
<td>military sexual trauma</td>
<td>Anxiety, alcohol use disorder, substance use disorder, and opioid use disorder</td>
</tr>
<tr>
<td>Girija et al. (2018)17</td>
<td>370 cases with a history of TBI</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>TBI</td>
<td>Cases who depicted psychological injury had higher scores for post-traumatic stress and depression.</td>
</tr>
<tr>
<td>Christine et al. (2021)18</td>
<td>575 military personnel in Afghanistan</td>
<td>Afghanistan or germanay</td>
<td>cohort</td>
<td>Blast TBI</td>
<td>Non blast controls but to a lesser extent, meeting criteria for moderate to severe PTSD symptoms was found to noticeably increase during this time frame</td>
</tr>
<tr>
<td>Bilal et al. (2021)19</td>
<td>346 participants with mTBI</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>mTBI</td>
<td>Cases with high pain interference were more likely to have history of ≥ 3 TBIs and to have clinical levels of post-traumatic stress disorder, depression, anxiety, and sleep disturbances versus those with insignificant pain interference.</td>
</tr>
<tr>
<td>Kelley et al (2019)20</td>
<td>283 military personnel (181 males; mean age 32.6±1 years who had deployed in support of recent wars in Iraq or Afghanistan</td>
<td>USA</td>
<td>Cohort</td>
<td></td>
<td>These findings provide preliminary support for associations between killing in combat and negative mental health (PTSD) outcomes and hazardous alcohol use.</td>
</tr>
<tr>
<td>Macera et al. (2014)21</td>
<td>31,534 Military personnel of raq, Afghanistan, or Kuwait</td>
<td>USA</td>
<td>Cohort</td>
<td>deployed to combat zones</td>
<td>Women in this sample had a similar probability of screening positive for PTSD. These PTSD symptoms were not associated with deployment-related variables, suggesting that deployment to a combat zone does not affect women differently from men. This finding could have meaningful implications for policies surrounding women in the military.</td>
</tr>
<tr>
<td>Harbertson et al. (2013)22</td>
<td>1,238 Rwanda Defense Forces</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>Defense Forces</td>
<td>Nearly one-fourth of RDF participants screened positive for PTSD or depression, which impacts sexual risk behaviour, HIV acquisition risk and military readiness.</td>
</tr>
<tr>
<td>Kline et al. (2013)23</td>
<td>922 (91 female) military personnel in Iraq</td>
<td>USA</td>
<td>Cohort</td>
<td>National Guard soldiers</td>
<td>In the fully controlled model, gender remained a significant predictor of PTSS but the effect size was small. Modifiable military institutional factors may account for much of the increased vulnerability of women soldiers to PTSD.</td>
</tr>
<tr>
<td>O’Neil et al. (2017)24</td>
<td>67 military with blast injuries and 23 without blast injuries</td>
<td>USA</td>
<td>Cohort</td>
<td>blast injuries</td>
<td>Cognitive, anger, and physicality subscales were significantly higher in veterans with PTSD, but there was no interaction between PTSD and mTBI or outburst history.</td>
</tr>
<tr>
<td>Glenn et al. (2017)25</td>
<td>852 active-duty Marines and Navy Corpsmen</td>
<td>USA</td>
<td>Cohort</td>
<td>blast injuries</td>
<td>Deployment TBI, and multiple-hit TBI in particular, are associated with increases in conditioned fear learning and expression that may contribute to risk for developing PTSD symptoms.</td>
</tr>
<tr>
<td>Rau et al. (2017)26</td>
<td>82 Veterans with and without personal history of repeated blast-related mTBI</td>
<td>USA</td>
<td>Cohort</td>
<td>blast injuries</td>
<td>Daytime sleepiness may be a mediating factor by which both mTBI and PTSD can impair future memory. Regardless of subjective sleep quality, clinical care of individuals with a self-reported history of</td>
</tr>
</tbody>
</table>
Reijnen et al. (2015) 27 994 Dutch military personnel Nederland Cohort deployment mTBI and/or PTSD should pay more attention to complaints of daytime sleepiness.

Trautmann et al. (2017) 28 1439 deployed soldiers Germany Cohort deployment PTSD were observed in deployed soldiers with high combat exposure compared with civilians.

Harbertson et al. (2018) 29 2078 deploying shipboard US military personnel USA Cohort deployment In total, 7.3% screened positive for PTSD

Khalili et al. (2018) 30 25 veteran in Iran Iran Qualitative research Trauma injuries Barriers to self-care include disease severity, involvement in other chronic physical illnesses, aggressive personality types, propensity for risky behavior, and delays in starting treatment, drug-treatment interactions, and psychotropic medications. Side effects and inappropriate access to certain medicines. Fatigue from long-term drug use, forgetting to take some drugs, inadequate dependence on pure drug therapy, lack of social worker activity, and inadequate organization. management, dissatisfaction with the organization and unexpected expectations of the organization.

Discussion
The results showed that one of the most common disorders generally includes PTSD in military/veteran personnel 6-10. Among the investigated diseases, post-traumatic stress disorder had a lower prevalence. Most of the military forces studied were men 16-18.

The few studies that have been conducted, mainly on veterans and retired forces, indicate the high prevalence of this type of disorder in the military forces. For example, in a study conducted in 2018 by Williamson et al. on military retirees, the results showed that about 13.4% of the participants had depression, about 9% had anxiety disorders, and 8.4% had PTSD 31. Another review study was conducted by Stevelink et al. in 2015 to investigate the prevalence of mental health disorders in military personnel with physical disabilities 32. In this study, which evaluated the available resources from establishing databases such as Medline and the Institute of Scientific Information until 2014, finally, 17 studies entered the final evaluation stage. The results showed that disorders such as anxiety, with a range of 16 to 35%, stress, with a field of 13 to 36%, and depression, with a range of 10 to 46%, are among the most critical problems related to mental health in military forces with amputation or physical injury.

Over the past two decades, the number of women serving in the military has increased and is expected to grow. This may put women at an increased risk of developing mental disorders. Gender was also a predictor in the meta-analysis 6-25. Post-traumatic stress disorder is more common in women than men after a fight. The findings corroborate a study conducted with army soldiers deployed to combat areas, where PTSD symptoms were more common in women than in studies comparing men and women. There are several possible factors for such results. But the main reasons appear to be that women report lower military readiness, lower unit cohesion, and higher rates of depression. Socio-demographic factors such as age have been noted. However, the results were mixed. In particular, it has been difficult to predict the impact of being young at the time of the trauma on the risk of developing PTSD, as age has opposing effects on different processes underlying the traumatic stress response 6-25.

When military characteristics were studied, military rank, military service, occupation, total duration of deployment, and number of deployments were the major contributors to combat-related post-traumatic stress disorder development.

Trauma Monthly 2023;28(2): 787-792 | 790
NCOs and support staff were more likely to be diagnosed with PTSD. This may have been due to increased exposure to combat. Other studies have also shown post-traumatic stress disorder is higher in NCO males than in officers. Military samples with traumatic brain injury were more likely to suffer from post-traumatic stress disorder than those without traumatic brain injury. Although most studies were conducted in the year following the accident, the total rate of PTSD after traumatic brain injury in both civilian and military samples was higher than the lifetime prevalence of PTSD in the general population.

Ramchand et al. (2015) evaluated the prevalence of mental disorders, especially post-traumatic stress disorder, in international military forces stationed in Iraq and Afghanistan and reviewed all available documents from 2009 to 2014 through databases. They gave. Their study showed that depending on the type of mission and duties of the military forces, the amount of mental disorders in them varies. For example, the prevalence of post-traumatic stress disorder ranged from zero in a group of Dutch military doctors stationed in Afghanistan to 48% in a sample of American National Guard soldiers. In the same way, the rate of depression was different from about 4 to 45 percent among other military groups.

A study showed that associated pathways and related genes be considered intelligent targets for managing pain in traumatic injuries patients. In the new research in managing PTSD cases especially with trauma injuries this issue should be regarded.

Conclusion
PTSD is among the most common mental health disorders in military forces. Therefore, measures must be taken to prevent and control these types of diseases, especially among military combat forces. Future studies can be conducted to classify mental health disorders based on factors such as the type of military service, the location of troops, and the military rank of individuals.

Acknowledgments
None.

Conflict of Interest Disclosures
The authors declare that they have no conflict of interests.

Funding Sources
None.

Authors’ Contributions

Ethical Statement
The board of emergency department, Baqiyatallah University of Medical Sciences confirmed the protocol of study.

References
PTSD Following Trauma Injuries in Military Personnel

